import numpy as np
from numpy import linalg as LA
core
Fill in a module description here
Unit
= Q(-75, 'ncoulomb') q1
Summary
Key ideas: - Electron energy levels are discrete - Ionization energy
The energy emits when electron make transition between energy levels
Rydberg
10973731.56816
= smp.symbols('lambda nu') lambdaa, nu
lambdaa
lambda
nu
nu
= smp.symbols('n_i n_f') n_i, n_f
n_i
n_i
= (Rydberg*h*c) * ((1/n_i**2) - (1/n_f**2)) formula
formula
2.17987236110358e-18/n_i**2 - 2.17987236110358e-18/n_f**2
= smp.Eq(1/lambdaa, formula) eq
eq
Eq(1/lambda, 2.17987236110358e-18/n_i**2 - 2.17987236110358e-18/n_f**2)
1, 2).evalf() formula.subs(
2.17987236110358e-18/n_i**2 - 2.17987236110358e-18/n_f**2
# #| export
# def the_wavelength_emit_from_transition(n1: 'the initial energy level', n2: 'the final energy level'):
# formula = (Rydberg*h*c) * ((1/n_i**2) - (1/n_f**2))
# formula_evaled = formula.subs([(n_i, n1), (n_f, n2)]).evalf()
# equation = smp.Eq(1/lambdaa, formula_evaled)
# return smp.solve(equation, lambdaa)
#energy_emit_from_transition(2, 1)
# the_wavelength_emit_from_transition(2, 1)
The energy that a photon carries
h
6.62607015e-34
c
299792458.0
\[\mathrm{E}=h \nu\] \[E=\frac{h c}{\lambda}\]
calculate_energy
calculate_energy (**kwargs)
h
6.62607015e-34
c
299792458.0
*c h
1.9864458571489286e-25
=525) calculate_energy(wavelength
3.783706394569388e-28
=3.37e-7) calculate_energy(wavelength
5.894498092430055e-19
def calculate_wavelength_from_energy(energy):
return energy/h
def calculate_wavelength_from_wavelength(frequency):
pass
=2) calculate_energy(wavelength
9.932229285744643e-26
Emission Spectrum
Use energy transitions to characterize materials
Bond
- Shell: like to be
total filled
>totally empty
>partial filled
Oxidation state of an atom tells
from mendeleev import Si, Fe, O, Al, Ca, Ti, F, Cr
Si.name
'Silicon'
Al.oxistates
[3]
Ca.oxistates
[2]
Ti.oxistates
[4, 3, 2]
F.oxistates
[-1]
Cr.oxistates
[6, 3, 2]
Cr.ec.conf
OrderedDict([((1, 's'), 2),
((2, 's'), 2),
((2, 'p'), 6),
((3, 's'), 2),
((3, 'p'), 6),
((3, 'd'), 5),
((4, 's'), 1)])
Fe.ec.conf
OrderedDict([((1, 's'), 2),
((2, 's'), 2),
((2, 'p'), 6),
((3, 's'), 2),
((3, 'p'), 6),
((3, 'd'), 6),
((4, 's'), 2)])
Fe.oxistates
[3, 2]
from mendeleev import Na
Na.oxistates
[1]